ST JOSEPH'S UNIVERSITY, BENGALURU-27.

DEPARTMENT OF BIOTECHNOLOGY

SYLLABUS FOR UNDERGRADUATE PROGRAMME

For Batch 2024-2027

(STATE EDUCATION POLICY)

SUMMARY OF CREDITS IN BIOTECHNOLOGY

		DEPA	ARTMENT OF BIO (UG) (2024-207	OTECHNOLOGY 27)	Y			
Semester 1	Code Number	Title	No. of Hours of Instructions	Number of Hours of teaching per week	Numb er of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT124	Introduction to Biomolecules and Microorganisms	45	03	03	40	60	100
Practical	BT 1P24	Techniques in Biochemistry and Microbiology	33	03	02	25	25	50
Total Num	ber of credits:				05			
Semester2	Code Number	Title	No. of Hours of Instructions	Number of teaching Hrs /week	Number of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT224	Fundamentals of Cell Biology and Analytical Techniques	45	03	03	40	60	100
Practical	BT 2P24	Techniques in Cell Biology	33	03	02	25	25	50
Total Num	ber of credits:				05			
<u>Semester 3</u>	Code Number	Title	No. of Hours of Instructions	Number of Hours of teaching per week	Numb er of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT325	Fundamentals of Genetics and Biostatistics	45	03	03	40	60	100
Practical	BT 3P25	Techniques in Genetics and Biostatistics	33	03	02	25	25	50
Total Number of credits:			1	05	1 1			
Semester4	Code Number	Title	No. of Hours of Instructions	Number of teaching Hrs /week	Number of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT425	Molecular Biology	45	03	03	40	60	100
Practical	BT 4P25	Molecular Biology	33	03	02	25	25	50
Total Number of credits:				05				

Semester	I
Paper Code	BT124
Paper Title	Introduction to Biomolecules and
	Microorganisms
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45
Number of Credits	3+2

BIOTECHNOLOGY UG SYLLABUS-SEP-2024 onwards

Objective of the Paper: This paper has two course subjects. The syllabus covers Biochemistry in both practical and theoretical aspects. It introduces biomolecules that are vital for understanding cell systems and thus providing the foundations of employing them in the industry. This paper also aims to introduce students to basic concepts in Microbiology, with key emphasis on instrumentation and analytical techniques used in microbial laboratories. The course also covers key concepts in antimicrobial agents and assessment of antimicrobial activity, besides providing opportunities for hands-on experiments involving isolation, culturing, control and study of microorganisms.

Content of Course: BT124: Introduction to Biomolecules and Microorganisms	
Biomolecules	30Hrs
Unit 1: Introduction	2 hrs
Introduction to Biochemical evolution, Prebiotic reactions and molecules, Urey Miller	1 hr
Experiment. Biochemical composition of living organisms, Role of matter in biological systems, Chemical bonds in biological systems.	1 hr
Unit 2: Carbohydrates	4 hrs
Classification, structure of monosaccharides (trioses-PGA, DHAP, pentoses-Ribose, Deoxy-Ribose and hexoses-Glucose, Galactose, Fructose), Disaccharides-Sucrose, Maltose, Lactose and Polysaccharides-Starch, Glycogen, Occurrence and functions. Active Learning : Blood glucose control-Role of insulin and glucagon, Glucose Uptake, Types of GLUT with functions	3 hrs (1 hr)
Unit 3: Proteins	7 hrs
Classification and Structure of Amino acids and proteins, Zwitter ion concept, Isoelectric pH, Concept of pKa and Buffers Levels of organization of proteins- Peptide Bond, Primary and secondary structure, Tertiary and quaternary structures, Denaturation. Active Learning- Analysis of Stable Structures of Proteins	4 hrs 2 hrs (1 hr)
Unit 4: Enzymes	6 hrs

Classification – types and functions, enzyme units. Factors affecting Enzyme Action. Cofactors – types, examples (NAD, FAD) with functions. Active site, Role of tertiary structure.	2 hr
Mechanisms of enzyme catalysis-Models: Lock and Key and Induced fit. Concepts of Km and Vmax. Enzyme inhibition – competitive, uncompetitive and Non-competitive	2hrs 2hrs
	5 hua
Unit 5: Lipids	5 nrs
Classification, functions and biological role of lipids	2 hrs
Classification and Structure of fatty acids	1 hr
Properties of phospholipids, sphingolipids, glycolipids, steroids, amphipathic lipids, cholesterol Active Learning : Properties of triacylglycerols and test for purity of lipids.	1 hr
	(1 hr)
Unit 6: Nucleic Acid	6 hrs
Chemical composition, structures; nucleosides, nucleotides; Watson & Crick model, Types of DNA – A, B and Z	3 hrs
Types of RNA (mRNA, tRNA) with structure and functions	2hr
Active Learning: Discussion on the original paper of Watson and Crick	(1 hr)
Introduction to Microorganisms	15 hrs
Unit 1: History of Microbiology	1 Hr
The past and present of Microbiology, Case study on HIV's evolutionary past	
UNIT 2-Prokaryotic microorganisms and Viruses	5 Hrs
Bacteria-Cell wall, Capsule, Flagella, Fimbriae, Pili, Plasmids, Endospore, Reserve	2 hr
food. Virus- General Characteristic, life cycle of bacteriophage -lytic and lysogeny	2 hr
Active Learning- Structure and lifecycle of viruses	(1hr)
UNIT 3-Eukaryotic microorganisms	2 Hrs
General characteristics of Algae, Fungi and Protozoa	
Unit 4- Microbial growth and Control	3 Hrs
Microbial growth-Growth curve and kinetics	1 hr
Sterilization techniques- Definition of terms, Physical methods- Heat & radiation	
Chemical Methods- Alcohol, aldehydes, phenols, halogen, sterilizing gases as antimicrobial	
agents	2 hrs
Unit 5- Antimicrobial agents and Microbial resistance	4 hrs
Mode of action of antimicrobial agents:	
Antifungal agents- Amphotericin B and Griseofulvin	2 hrs
Antibacterial agents- Plazomicin and Imipenum	$\frac{2}{100}$ hr
Active Learning: Antiviral agents, Amentadine and Acyclovir	(1 hr)
Active Learning; Antivital agents- Antantaunie and Acyclovii	()

Practical II: BT 1P24: Techniques in Biochemistry and Microbiology

- 1. Introduction to molarity, molality and normality, Calculations for solution preparations, Instruments: Handling of pipettes, burettes, colorimeter and spectrophotometer.
- 2. Estimation of Reducing Sugars by DNS method.
- **3**. Estimation of protein by Biuret method.
- 4. Enzyme Analysis, Kinetics.

5. Handling and applications of important instruments (biological safety cabinets, autoclave, incubator, hot air oven, light microscope, pH meter) used in the microbiology and Biotechnology laboratory.6. Preparation of culture media for bacterial and fungal isolations, plate preparations and open air culture.

7. Colony characteristics study of bacteria and fungi from air exposure plate.

8. Bacteria-Gram staining Staining techniques, Fungi - Lacto-phenol cotton blue staining

9. Pure culturing techniques: Plating techniques and maintenance of individual cultures.

10. Biochemical Tests – IMViC, Starch hydrolysis, Catalase test, Gelatin hydrolysis, TSI agar and amylase production.

Text Books / References

1. Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T. Brown Publishers.

2. Black JG. (2008). Microbiology: Principles and Explorations. 7th edition. Prentice Hall

3. Madigan MT, and Martinko JM. (2014). Brock Biology of Micro-organisms. 14th edition. Parker J. Prentice Hall International, Inc.

4. Pelczar Jr MJ, Chan ECS, and Krieg NR. (2004). Microbiology. 5th edition Tata McGraw Hill.

5. Srivastava S and Srivastava PS. (2003). Understanding Bacteria. Kluwer Academic Publishers, Dordrecht

6. Stanier RY, Ingraham JL, Wheelis ML and Painter PR. (2005). General Microbiology. 5th edition McMillan.

7. Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition Pearson Education.

8. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education.

9. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson Education Limited

10. Microbiology- Concepts and applications by Paul A. Ketchum, Wiley Publications

- 11. Fundamentals of Microbiology Frobisher, Saunders & Toppan Publications
- 12. Introductory Biotechnology-R.B Singh C.B.D. India (1990)

13. Fundamentals of Bacteriology - Salley

- 14. Frontiers in Microbial technology-P.S. Bison, CBS Publishers.
- 15. Biotechnology, International Trends of perspectives A. T. Bull, G.

16. General Microbiology -C.B. Powar

17. Principles of Biochemistry by Lehninger

18. Biochemistry by Stryer

19. Brooker, Wiemaier G, Stiling, Principles of Biology

Semester	П
Paper Code	BT224
Paper Title	Fundamentals of Cell Biology and Analytical
	Techniques
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45
Number of Credits	3+2

Objective of the Paper: This paper has been designed to expose students to a broad range of cell biological themes. The topics will be covered in depth, with references to the relevant techniques and disease implications. These will provide the students a firm handle of cell biological principles and the ability to understand and analyze diverse biological phenomenon.

Fundamentals of Cell Biology	30 Hrs
Unit 1: Cell biology basics	2 hours
Cell theory, cell size and volume, cellular organization	1 hr
Eukaryotes vs prokaryotes, compartmentalization.	1 hr
Unit 2: Cell structure and function	4 hours
Introduction to eukaryotic cells, basics of cell organelles	1 hr
Nucleus, ER and Golgi complex, endomembrane system, mitochondria and	2 hrs
chloroplast	
Active Learning: Endosymbiotic theory.	(1 hr)
Unit 3: Plasma membrane and transport	4 hours
Structure of the plasma membrane and associated proteins, membrane permeability	2 hrs
Active and passive transport, facilitated diffusion and transport proteins, tonicity and	
osmoregulation	2 hrs
Unit 4: Cellular energetics	4 hours
Introduction to metabolism (anabolism and catabolism), ATP and reaction coupling, C3	2 hrs
and C4 cycles, overview of cellular respiration	
Oxidative phosphorylation and the electron transport chain, fermentation and	1 hr
anaerobic respiration	
Active Learning: Evolution of photosynthesis	(1 hr)
Unit 5: Cell communication	5 hours
Terre describes to sell size all second second using inter-	2 6 40

Introduction to cell signaling and general principles	2 hrs
Ligands and receptors, GPCR signaling (yeast mating type signaling), feedback and	2 hrs
homeostasis	
Endocrine pathways and long- distance communication, HPA axis.	1 hr
Unit 6: Cell cycle and regulation	5 hours
Cell cycle overview, interphase and mitotic phases	1 hr
Cell cycle checkpoints and tumor suppressors	1 hr
Introduction to meiosis, synapsis and crossing-over	2 hr
Active Learning: Cell cycle dysregulation in cancer	(1 hr)
Unit 7: Cell cytoskeleton and tissue formation	4 hours
Filaments and tubules	1 hr
Organization of cytoskeletal elements	1 hr
Cell movement Plant cell wall	1 hr
Active Learning: Role of the extracellular matrix in tissue formation.	(1 hr)
Unit 8: Cell death	3 hours
Definition of life and death, accidental and programmed cell death	1 hr
Apoptosis: brief introduction and physiological importance	1 hr
Cell viability and tests for cell death.	1 hr
Analytical Techniques	15 hours
Unit 9: Basic principles	2 hours
Units of measurement, electrolytes and pH, quantitative biological measurements.	2 hrs
Unit 10: Cell disruption and centrifugation	3 hours
Methods of cell lysis: physical and chemical,	1 hr
Basic principle of sedimentation, types of centrifugation, preparative versus analytical	
centrifugation.	2 hrs
Unit 11: Microscopy	3 hours
Light microscopy, magnification, numerical aperture, resolution	1 hr
Fluorescent proteins and live cell imaging, fluorescence microscopy	1 hr
Electron Microscopy	1 hr

Unit 12: Chromatography	3 hours
Principles of chromatography and performance parameters, adsorption and partition	
chromatography, size-exclusion chromatography, affinity chromatography	2 hrs
Active Learning: High-performance liquid chromatography.	(1 hr)
Unit 13: Electrophoresis	2 hours
Discussion on matrices, agarose electrophoresis, SDS and native PAGE	
Unit 14: Basics of spectroscopy	2 hours
Ultraviolet and visible light spectroscopy	1 hr
Active Learning: Fluorescence spectroscopy.	(1 hr)

Practical: BT 2P24: Techniques in Cell Biology

- 1) Calculation of cell number using a hemocytometer
- 2) Effect of cell size on diffusion using agarose gel.
- 3) Sedimentation: isolation of chloroplasts
- 4) Staining of mitochondria (Janus Green) in cheek cells.
- 5) Mitosis: Onion root tip
- 6) Meiosis: Anthers
- 7) Osmosis: RBC/yeast
- 8) Chromatography: TLC of amino acids
- 9) Micrometry
- 10) Electrophoresis: agarose gel electrophoresis of dyes

Reference text

Molecular Cell Biology, Eighth Edition, 2016, Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidde Ploegh; Angelika Amon; Kelsey C. Martin

Principles and techniques of Biochemistry and Molecular Biology, Seventh

Edition, 2010 Keith Wilson and John Walker.

Semester	Ш
Paper Code	BT325
Paper Title	Fundamentals of Genetics and Biostatistics
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45 Theory + 33 Practical
Number of Credits	3+2

Objective of the Paper: This paper has two course subjects. The syllabus covers Genetics and Biostatistics in both practical and theoretical aspects. As part of Genetics, it introduces the fundamental principles of Mendelian Genetics exhaustively. This paper also aims to introduce students to basic concepts in Biostatistics and its applications in the field of biological sciences.

Content of Course: BT325: Fundamentals of Genetics and Biostatistics	
Genetics	30Hrs
Unit 1: Mendelian Genetics	4 hrs
Mendel's study of heredity-Mendel's experiments, Genotype, phenotype, zygosity, Alleles: dominant and recessive;	1 hr
Principle of segregation, Monohybrid cross, Principles of Independent assortment - Dihybrid cross, Trihybrid ratio,	1 hrs
Application of Mendel's Principles-The Punnett square method, the probability method and	

the chi-square test; Active Learning: Problems.	1 hr
Unit 2: Non Mendelian Inheritance	6 hrs
Allelic variation, incomplete dominance and co-dominance; Multiple alleles: ABO blood type alleles in humans, Rh factor alleles in humans; Genotypic interaction- Epistasis (dominant and recessive), Pleiotropy Active Learning : Problems,	1 hr 1 hr 1 hr 1 hr 1 hr
Extra nuclear inheritance-inheritance of plastid and kappa particles	2 hrs
Unit 3: Linkage and Crossing Over	3 Hrs
Introduction, detection of linkage, factors affecting recombination frequency, cytological basis of crossing over, crossing over in four strand stage, relation between chiasma and crossing over;	1 hr 1 hr
Unit 4: Sex Determination Sex Linkage Pedigree Analysis	1 III 8 hrs
Chit 4. Sex Determination, Sex Emixage, I cuigree Analysis	0 11 3
Sex determination-Pattern and sex chromosomes, Sex determination in human beings, flowering plants;	2 hrs
Sex linkage, Sex linked genes in human beings-Haemophilia; Genes on X and Y chromosomes;	1 hr 2hrs
Pedigree analysis-Penetrance and expressivity, Inheritance patterns: Autosomal and Sex- linked (dominant, recessive)	2hr 1 hr
Unit 5: Population Genetics	3 hrs
Concept of Gene pool and Allele Frequencies (Gene and genotypic frequencies)	1 hr
The Hardy-Weinberg principle, Application of the Hardy – Weinberg principle and factors affecting H-W equilibrium-Natural selection, Genetic drift;	1 hr
Speciation-Definition of species and mode of speciation (allopatric, sympatric)	1 hr
Unit 6: Chromosomal Aberrations	6 nrs
Numerical chromosomal aberrations – Euploidy, polyploidy- Auto and Allopolyploids; Aneuploidy- Trisomy, monosomy, nullisomy; Examples of aneuploid humans.	3 hrs
Structural chromosomal aberrations -Deletions and Duplication of chromosome segments; Rearrangement of chromosome structure - inversion, translocation	3hrs
BIOSTATISTICS	15 Hrs
UNIT 1-Introduction	2Hrs
Definition of selected terms Scale of measurements, Methods of collecting data, Presentation of data, statistical tables, Need for reduction of data.	
UNIT 2-Population and Sampling Techniques	2Hrs
Concepts of statistical population and sample, need for sampling studies; Simple procedures of random sampling; Methods of sampling.	2 Hrs
UNIT 3- Measures of Central Tendencies	3 Hrs
Mean, Median, Mode	3 hrs
Unit 4- Measures of Dispersion	3 Hrs

Range, quartile deviation Mean deviation, Variance & Standard deviation, Coefficient of Variance	1Hr 2 Hrs
Unit 5- Probability	2hrs
Basic concepts; Basic theorems of probability addition and multiplication theorems;	1 hr
Conditional probability	11
Introduction to Probability distributions, Binomial, Poisson and Normal Distribution	Inrs
Unit 6- Correlation and Regression	3hrs
Correlation concept and applications; Regression concept and applications	

Practical III: BT 3P25: Techniques in Genetics and Biostatistics

- 1. Fly husbandry I
- 2. Fly husbandry II
- 3. Crossing: Monohybrid crosses
- 4. Isolation of salivary gland chromosomes.
- 5. Identification of Biomarkers.
- 6. Barr body identification.
- 7. Blood typing and probability testing.
- 8. Karyotyping
- 9. Data Analysis I.
- 10.Data Analysis II.
- 11.DNA fingerprinting

Text Books / References

Genetics:

- 1. Molecular Biology of Cell Bruce Alberts et al, Garland publications.
- 2. Animal Cytology and Evolution- MJD, White Cambridge University Publications
- 3. Molecular Cell Biology-Daniel, Scientific American Books
- 4. Cell Biology Jack d Bruke, The William Twilkins Company
- 5. Principles of Gene Manipulations- Old & Primrose, Black Well Scientific Publications
- 6. Cell Biology-Ambrose & Dorothy M Easty, ELBS Publications
- 7. Fundamentals of Cytology- L. W. Sharp, McGraw Hill Company
- 8. Cytology-Willson&Marrison, Reinform Publications
- 9. Molecular Biology- Christopher Smith, Faber & Faber Publications
- 10. Cell Biology & Molecular Biology EDP De Robertis& EMF Robertis, Saunder College.
- 11. Cell Biology- C.B Powar, Himalaya Publications
- 12. Basic Genetics- Daniel L. Hartl, Jones & Barlett Publishers USA
- 13. Human Genetics and Medicine lark Edward Arnold P London
- 14. Genetics Monroe W Strickberger, Macmillain Publishers, New York
- 15. Genes V Benjamin Lewin, Oxford University Press.
- 16. Genes I Benjamin Lewin, Wiley Eastern Ltd., Delhi
- 17. Genes II Benjamin Lewin, Wiley & Sons Publications
- 18. Genes III- Benjamin Lewin, Wiley & Sons Publications
- 19. Principles of Genetics- Sinnott, L.C. Dunn, Dobzhansky, McGraw-Hill.
- 20. Genetics Edgar Altenburg Oxford & IBH publications
- 21. Principles of Genetics E.J. Gardener, M.J. Simmons and D.P. Snustad, John Wiley & Son Publications
- 22. Genetics- P.K.Gupta, Rastogi Publication, Meert, India.

Biostatistics:

Principles of Biostatistics, Rosner Biostatistics by Khan and Khanum Biostatical Analysis, Jerrold H. Peasron

Course Outcomes for BT325

After successful completion of the course, the students will:

CO1	Comprehend Fundamental Genetic Principles
CO2	Analyze Genetic Interactions and Variability
CO3	Apply Genetic Concepts in Population Studies
CO4	Understand and Apply Statistical Concepts
CO5	Analyze Data Using Descriptive Statistics
CO6	Apply Statistical Methods for Data Interpretation

Semester	IV
Paper Code	BT425
Paper Title	Molecular Biology
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45 Theory + 33 Practicals
Number of Credits	3+2

Objective of the Paper: This course deals with the fundamentals of Molecular Biology: DNA structure, replication, gene expression and regulation. The practical sessions train the student in selected basic techniques in DNA isolation and analysis.

Content of Course: BT425: Molecular Biology Molecular Biology	
Classical experiments: Griffith's, Avery, and Hershey - Chase experiments The race to enumerate the structure of DNA, Watson and Crick's model of the DNA double helix DNA Compaction and Structure of eukaryotic chromosomes/eukaryotic gene Active learning exercise: Analysis of data from classical experiments that led to the discovery of DNA structure	1h 2h 2h 1h
Unit 2: DNA Replication	7h
Semiconservative model of replication (Meselson & Stahl experiment) Bidirectionality and semi-discontinuous nature of replication Replication fork and the main scheme of DNA replication Replication in Prokaryotes: Initiation, elongation and termination Replication in Eukaryotes: Initiation, elongation and termination, telomeres, telomerase	1h 1h 1h 2h 2h
Unit 3: DNA Damage and Repair	8h
Radiation Damage, DNA instability, Oxidative damage, Alkylation Damage Introduction to mutagens, types of mutagens (chemical, physical and biological) Active learning exercise: Mutations Repair mechanisms: Photoreactivation, Excision Repair, Mismatch repair and SOS response Non homologous end joining and Homologous recombination to repair Double stranded DNA breaks	2h 1h 1h 2h 2h
Unit 4: Gene expression: Transcription	8h
Promoters, General Transcription factors, DNA binding domains Bacterial Transcription Initiation, Elongation and Termination	2h 2h 2h

Active learning: Eukaryotic RNA Polymerases, Promoters, Eukaryotic Transcription Initiation, Elongation and Termination Processing of eukaryotic mRNAs-Capping, Splicing and Polyadenylation.	
UNIT 5: Gene expression: Translation	8h
Structure of Ribosomes, Transfer RNA, Aminoacylation, mRNA and the Genetic Code Molecular events of Translation initiation, elongation and termination in prokaryotes Overview of the molecular events of Translation Initiation, Elongation and Termination in eukaryotes Active learning: Post translational modifications of proteins	
Unit 6: Gene expression regulation	8h
Concept of regulation, overview of gene regulation Prokaryotic Gene Regulation-Lac and Trp operons Eukaryotic Gene Regulation- Regulatory promoter elements, epigenetic changes in chromatin structure and DNA methylation Active learning - RNAi	1h 4h 2h 1h

Practical IV: BT 4P25: Molecular Biology

- 1. Introduction to DNA Isolation and Discussion of Cheek cell DNA isolation
- 2. Preparation of buffers and Cheek cell DNA Isolation
- 3. Agarose Gel electrophoresis of cheek cell DNA
- 4. DNA isolation from *E.coli*, *S. cerevisiae*, and plant leaf samples (Part A)
- 5. DNA isolation from *E.coli*, *S. cerevisiae*, and plant leaf samples (Part B)
- 6. DNA isolation from *E.coli*, *S. cerevisiae*, and plant leaf samples (Part C)
- 7. Analysis/Comparison of DNA quality and concentration, Agarose gel electrophoresis
- 8. Understanding Protein Structure and SDS PAGE set up
- 9. Extraction of total protein from dal / lentil samples

10. Electrophoresis of extracted protein through SDS PAGE

Text Books / References

- 1. Genomes 3.0, T.A Brown
- 2. Genes to Proteins, Burton E Tropp, Fourth Edition
- 3. Principles of Biology, Brooker, Widmaier, Graham and Stiling
- 4. Molecular Biology of the Gene, James D. Watson

COURSE OUTCOMES for BT425:

After successful completion of the course, students will:

CO1	Critically Evaluate DNA Structure and Chromatin Organization
CO2	Integrate DNA Replication and Repair Mechanisms
CO3	Examine the Complexity of Transcription and Translation
CO4	Investigate Post-Transcriptional and Post-Translational Modifications
CO5	Analyze Gene Regulation and Epigenetic Modifications